Stability of persistence spaces of vector-valued continuous functions
نویسندگان
چکیده
Multidimensional persistence modules do not admit a concise representation analogous to that provided by persistence diagrams for real-valued functions. However, there is no obstruction for multidimensional persistent Betti numbers to admit one. Therefore, it is reasonable to look for a generalization of persistence diagrams concerning those properties that are related only to persistent Betti numbers. In this paper, the persistence space of a vector-valued continuous function is introduced to generalize the concept of persistence diagram in this sense. The main result is its stability under function perturbations: any change in vector-valued functions implies a not greater change in the Hausdorff distance between their persistence spaces.
منابع مشابه
Betti numbers in multidimensional persistent homology are stable functions
Multidimensional persistence mostly studies topological features of shapes by analyzing the lower level sets of vector-valued functions, called filtering functions. As is well known, in the case of scalar-valued filtering functions, persistent homology groups can be studied through their persistent Betti numbers, i.e. the dimensions of the images of the homomorphisms induced by the inclusions o...
متن کاملRealcompactness and Banach-Stone theorems
For realcompact spaces X and Y we give a complete description of the linear biseparating maps between spaces of vector-valued continuous functions on X and Y , where special attention is paid to spaces of vector-valued bounded continuous functions. These results are applied to describe the linear isometries between spaces of vector-valued bounded continuous and uniformly continuous functions.
متن کاملQuadratic Reverses of the Continuous Triangle Inequality for Bochner Integral of Vector-valued Functions in Hilbert Spaces
X iv :m at h/ 04 06 10 8v 1 [ m at h. FA ] 6 J un 2 00 4 QUADRATIC REVERSES OF THE CONTINUOUS TRIANGLE INEQUALITY FOR BOCHNER INTEGRAL OF VECTOR-VALUED FUNCTIONS IN HILBERT SPACES SEVER S. DRAGOMIR Abstract. Some quadratic reverses of the continuous triangle inequality for Bochner integral of vector-valued functions in Hilbert spaces are given. Applications for complex-valued functions are prov...
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملAdditive Reverses of the Continuous Triangle Inequality for Bochner Integral of Vector-valued Functions in Hilbert Spaces
Some additive reverses of the continuous triangle inequality for Bochner integral of vector-valued functions in Hilbert spaces are given. Applications for complex-valued functions are provided as well.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1305.6425 شماره
صفحات -
تاریخ انتشار 2013